4-aminopyridine prevents the conformational changes associated with p/c-type inactivation in shaker channels.
نویسندگان
چکیده
The effect of 4-aminopyridine (4-AP) on Kv channel activation has been extensively investigated, but its interaction with inactivation is less well understood. Voltage-clamp fluorimetry was used to directly monitor the action of 4-AP on conformational changes associated with slow inactivation of Shaker channels. Tetramethylrhodamine-5-maleimide was used to fluorescently label substituted cysteine residues in the S3-S4 linker (A359C) and pore (S424C). Activation- and inactivation-induced changes in fluorophore microenvironment produced fast and slow phases of fluorescence that were modified by 4-AP. In Shaker A359C, 4-AP block reduced the slow-phase contribution from 61 +/- 3 to 28 +/- 5%, suggesting that binding inhibits the conformational changes associated with slow inactivation and increased the fast phase that reports channel activation from 39 +/- 3 to 72 +/- 5%. In addition, 4-AP enhanced both fast and slow phases of fluorescence return upon repolarization (tau reduced from 87 +/- 15 to 40 +/- 1 ms and from 739 +/- 83 to 291 +/- 21 ms, respectively), suggesting that deactivation and recovery from inactivation were enhanced. In addition, the effect of 4-AP on the slow phase of fluorescence was dramatically reduced in channels with either reduced (T449V) or permanent P-type (W434F) inactivation. Interestingly, the slow phase of fluorescence return of W434F channels was enhanced by 4-AP, suggesting that 4-AP prevents the transition to C-type inactivation in these channels. These data directly demonstrate that 4-AP prevents slow inactivation of Kv channels and that 4-AP can bind to P-type-inactivated channels and selectively inhibit the onset of C-type inactivation.
منابع مشابه
Slow Inactivation in Shaker K Channels Is Delayed by Intracellular Tetraethylammonium
After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches--the so called C inactivation--is a constriction of the external mouth of the channel pore that prevents K(+) ion conductio...
متن کاملRegulation of Shaker K+ channel inactivation gating by the cAMP-dependent protein kinase.
In response to depolarization of the membrane potential, Shaker K+ channels undergo a series of voltage-dependent conformational changes, from resting to open conformations followed by a rapid transition into a long-lived closed conformation, the N-type inactivated state. Application of phosphatases to the cytoplasmic side of Shaker channels in excised inside-out patches slows N-type inactivati...
متن کاملMacroscopic Na+ Currents in the “Nonconducting” Shaker Potassium Channel Mutant W434F
C-type inactivation in Shaker potassium channels inhibits K+ permeation. The associated structural changes appear to involve the outer region of the pore. Recently, we have shown that C-type inactivation involves a change in the selectivity of the Shaker channel, such that C-type inactivated channels show maintained voltage-sensitive activation and deactivation of Na+ and Li+ currents in K+-fre...
متن کاملHidden Markov Model Analysis of Intermediate Gating Steps Associated with the Pore Gate of Shaker Potassium Channels
Cooperativity among the four subunits helps give rise to the remarkable voltage sensitivity of Shaker potassium channels, whose open probability changes tenfold for a 5-mV change in membrane potential. The cooperativity in these channels is thought to arise from a concerted structural transition as the final step in opening the channel. Recordings of single-channel ionic currents from certain o...
متن کاملShal and shaker differential contribution to the K+ currents in the Drosophila mushroom body neurons.
Shaker, a voltage-dependent K+ channel, is enriched in the mushroom bodies (MBs), the locus of olfactory learning in Drosophila. Mutations in the shaker locus are known to alter excitability, neurotransmitter release, synaptic plasticity, and olfactory learning. However, a direct link of Shaker channels to MB intrinsic neuron (MBN) physiology has not been documented. We found that transcripts f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 320 1 شماره
صفحات -
تاریخ انتشار 2007